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A classification of the linear relaxational models of two-phase filtration is 
given. Five types of nonequilibria are distinguished. 

A model of nonequilibrium two-phase filtration, describingthe process of diSplacement 
of oil by water, is studied in [i]. The model is based on the hypothesis that the departure 
from equilibrium can be taken into account by replacing the saturation in the phase per- 
meabilities (or the Bakleya-Leverett function) by its effective value s. At the same time 
the difference between s and s was assumed to be proportional to the rate of change of the 
saturation: 

~ = s + ~ .  (1 )  

We shall analyze the relaxation filtration of a two-phase liquid from more general 
considerations. 

i. For plane-parallel filtration with a constant velocity V = const we write down the 
system of equations 

as o 
m + v F(~) = 0, (21 Ot Ox 

where 

d~ (t')s(t--t')dt. (3 )  ~=~(o)~+ .I' -Z- 
0 

Based on the principle of decay of the memory the following limitation is imposed on the 
kernel [2]: 4(oo) = lim ~ ( t )  = 1 

We shall study the propagation of small disturbances of the saturation along the sample, 
whose initial value is constant and equals s. It is easy to see that s - s is also small. 
Then, up to second-order infinitesimals, we obtain F(s) = F(s) + F'(s)(s_-s). Taking into 
account (3), we write Eq. (2) for deviations of the saturation s' = s - s (in what follows 
we omit the prime) 

colOSot Os ~-~-t  ~-x -b~(O)-~x + ( (t') (t--t')dt'=O, ( 4 )  

where Co = VF'(~)m -I. 

Next we shall study the solution of Eq. 

initial 

(4) with the following conditions: 

and boundary 

s(x, t ) =  o, t < o ,  (5 )  

s (Xo, t) = f (t), t > o. (6) 
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It is easy to check that the solution of this problem also describes plane-parallel and 
spherically radial flow only with the x coordinate replaced by r2/2 and r3/3, respectively. 

Applying to the relations (4) and (6) the Laplace-Carson transformation we obtain (* 

indicates the transform of the function): 

ds* s* 
--+ ---0, 

dx L* (a) 
L* (o') - co~I-iqb * (o'), s* (xo, a)  = [*  (o'). 

Determining s* and returning to the original functions, we obtain 

S(X, t )= (2zi) -1 S g-t[(g)exp(--L*--l(a)(x--x~ + ~t)~. 

We shall assume below that there exists an original function L(t). It is well known that to 
the asymptotics of the transforms in the limit o + ~ (o + 0) there correspond asymptotics 
of the original functions on the right sides in the limit t § 0 (t + ~) (Tauberian theorems). 
This is very convenient for studying the behavior of the solution. 

2. One of the features of the transient processes of relaxational filtration is the 
fact that the boundary-value problems for some types of kernels r are no longer properly 
posed. In these problems a mismatch between the boundary conditions and initial conditions; 
in the sense of the existence of a continuous solution in the closed space [x, T], is not 
admissible. 

The asymptotics of the solution (4)-(6) for short times has the form 

s (x, t) = f (0) exp ( - - L - '  (O)(x - -  x0)), 

and t h e r e f o r e ,  1) i f  L(O) = O, t h e n  s ( x ,  O) = O, and a m i s m a t c h  b e t w e e n  t h e  b o u n d a r y  and 
initial conditions is admissible, and 2) if 0 < L(0) < ~, then a nonzero saturation distribu- 
tion is established "suddenly" initially, and a mismatch between the boundary and initial 
conditions is inadmissible. 

In the case 0 < L(0) < ~ it is interesting to examine a detailed asymptotic expansion 
of the solution for short times. Expanding s*(x, o) at a point at infinity o = ~ in powers 
of o = 0 -I (which according to the Tauberian theorems corresponds to the point t = 0) and 
then transforming back to the original functions, we obtain 

i { [ d,nf(o, (xx0, d(L, 1, I r ,,dt+o i s(x, t) = exp ( - - L - ' ( O ) ( x  - -Xo) )  [(t)+ d~ d~r ~=gO b 

It is not difficult to show that the velocity of propagation of the saturation front is 
determined by the formula 

c = l im a L * ( o ) .  

It is obvious that in the case 0 < L(0) < ~, c = ~, and if L(0) = 0, then c = dL/dt(0). 

Next in the case of a finite rate of propagation of the front, by analogy to geometric 
optics [3] we obtain an expansion of the solution near the displacement front: 

s (x, t) ---- exp ( - - a  (x -- xo)){/(t -- c -1 (x -- Xo)) 
t - - c  - ~ ( x - - xo )  t - - c  - '(x--xo) 

0 0 

while at the front itself at t = c-1(x - x 0) we have a relation for the jump in the satura- 
tion 

Is] = s (x, c -1 (x - -  xo)) = exp ( - - a  (x - -  x0)) [ (0), 

w h i c h  i n d i c a t e s  e x p o n e n t i a l  d e c a y  o f  t h e  p e r t u r b a t i o n s  i n  t h e  s t r a t u m ,  w h e r e  

a =~ lira ( L * - '  (a)  - -  c-ia) 
0 - ~ o o  
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is the decay coefficient and 

b = lira [(L * - l ( v ) - c - t ~ - a ) ~ ] .  

3 .  T h e  s t u d y  o f  t h e  a s y m p t o g i c s  o f  t h e  s o l u t i o n  f o r  s h o r t  t i m e s  e n a b l e s ,  e m p l o y i n g  t h e  
p r o c e d u r e  o f  [ 4 ] ,  c l a s s i f i c a t i o n  a s  a f u n c t i o n  o f  t h e  v a l u e s  o f  L ( 0 ) ,  c ,  a n d  a o f  a l l  p o s s i b l e  
t y p e s  o f  l i n e a r  r e l a x a t i o n  m o d e l s  o f  f i l t e r i n g  o f  a t w o - p h a s e  l i q u i d .  T h e  c l a s s i f i c a t i o n  l e a d s  
to five types of models. 

Type i. L(O) = 0 and c = O. The medium does not lead to perturbations, so that models 
of this type must be ignored as being physically meaningless. An example of such a model is 

0s q,,  
+ ~ -07- = s, (~) == (1 + ,~)-~, 

q~ (t) = (1 + exp ( - - l '~- t ) ) ,q  (t), 

Type 2. 
and initial conditions. The rate of propagation of the displacement front is finite, 
that three cases can be studied depending on the value of the damping coefficient: 

I .  

L* (~) = Co ~-1 (1 + x(r) -l ,  L (t) = Co (t + x (1 - -  exp (ix-i))) ~1 (t), 

L(0)---- 0, c =  lira c0(l  + x o ) - ~ - - - - 0 ,  a - - 0 .  
~ O O  

L ( 0 )  = 0 ,  0 < c < oo. M o d e l s  o f  t h i s  t y p e  a d m i t  a m i s m a t c h  b e t w e e n  t h e  b o u n d a r y  
S O  

qs(t) = n(t), 

L ( t ) =  Corn(t), 

Equilibrium filtration a = 0: 

s = s ,  q ' *  (cr) ~ 1,  

L* ((I) ~ co~ - t ,  

where q(t) is the Heaviside switching-on function; 

C ~ CO, a = c ~ l ~ - - c - i f f =  0 ,  

whence it follows that the jump in saturation remains. 
ment according to the Bakleya-Leverett scheme. 

II. 0 < a < ~: 

We have the case of piston displace- 

as as 
s + ~ - - 6 / - = s + z "  at ' 

qb* (a) ~ (1 -~ X,a)(1 + T l f f )  -t, 

q~ (t) = (1 - -  ( 1 - -  xT l x.~) exp (--tx-(1)) ~1 (t), 

L* (0) = C0(r-t (1 -t- T2~)(I + T10) - i ,  

L (t) : co (t + ('r2 - -  xx)(1 - -  exp ( - - i v - i ) ) )  r I (t), 

c = Co'CT'x..< oo, a = co I ( ~ - -  Tx) z~-2, 

and there exists a jump in the saturation according to the law 

[six = exp ( - - c ~  l (~: - -  Ti) x~ 2 (x - -  Xo))[s] . . . .  - 
III. a = ~: 

0 I/2 s 01i2s 
s + ~ ,  0---07r~ = s+~'o 

- 01112 ~ ( ~ )  : :  (1 -Jr- T2 -V~)(1 -+- T~ V ~ )  -*, 

(t) = ,1 ( t ) (~t )  

I 
oo 

2 .[ (1 - -  (1 - -  "ITT 1'[2) exp ('ri- %) exp ( - -x~  (40-1)) de:; 
0 
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c = C0T~I~=, like in the preceding model, and a = lim(~=--~1)(~ 2 __TI)-2 -- the disturbances 
decay instantaneously, o~ 

Type 3. L(0) = 0, c = =. For models of this type a mismatch between the boundary and 
initial conditions is also admissible. The velocity of propagation of the perturbation front 

An example of models of this is infinite, but at infinity the perturbations are infinitesimal. 
type is: 

^ 0 1 / ~ s  
S ~ S-2c T .  

Ot 1/2 , 

I 

r  (~) - -  1 + �9 -I/~, ~ (t) --  (1 + k (~t) e ) n (0 (k - -  cons t ) ,  

L* (a) = Co (1 + T "l/~-) ~-~, L (t) = co (t + 2k'c ]/t-~ -=r) N (t), 

c :  lira(1 + ' c - [ / ~ )  : oo. 
o - ~ o o  

Type 4. 0 < L(0) < ~, c = ~. Models of this type do not admit a mismatch between the 
boundary and initial conditions. The rate of propagation of the saturation front is infinite. 
Such models are not suitable for studying the full transient process, but they can be employed 
for not very sharp changes in the saturation, for example, as intermediate asymptotics. An 
example of this model, proposed by Barenblatt and Vinnichenko [i], is: 

Os ~ .  
s = s + ~ - - - g f - ,  (~ )= 1 + ~ ,  , l , ( t )= 1 +'c~(t),  

L*(o') = c0a-~(1 + T a ) ,  L(t) = Co(t+~)~l(t), 

where 6(t) is a Dirac delta function and q(t) was determined above, 0 < L(0) = cot < ~, the 

saturation distribution s(x, t ) , - , f (O)exp(c~-~(X--Xo))  is established initially. 

Type 5. L(0) = ~, c = ~. Models of this type also do not admit a mismatch between the 
boundary and initial conditions, since initially a constant saturation distribution s(x, f) 
f(0) is established "suddenly," An example of a model of this type is: i~0 

02S 
s = s + ~ - - ,  

Ot 2 
r  = 1 + ~ ,  4 , ( t ) - - ( 1  + ~6'(t)), 

L*(<y) = co~-~(1 + zc~Z), L(t) ~ Co(t + wt-9*l(t). 

The medium seems to exhibit infinite conductivity. Models of this type should not be em- 
ployed to study the full transient process, but only as an intermediate asymptotics. 

NOTATION 

s, saturation of water; ~, effective saturation; t, time; s, initial saturation of the 
water; ~, characteristic time for establishing equilibrium; F(s), a function expressing the 
ratio of the moduli of the velocity of the water and the total velocity; V, total flow 
velocity; m, porosity; r relaxation kernel; x, spatial coordinate; x0, a boundary point; 
f(t), saturation distribution fixed at the boundary; r, a variable radius; o, Laplace-Carson 
transformation parameter; L*(o) and L(t) complex linear size in the transform plane and its 
original function; co, constant; c, velocity of propagation of the saturation front; and b, 
TI~ and T2, constants. 

lo 
2. 
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BEHAVIOR OF THE REFLECTION COEFFICIENTS OF TEXTOLITES 

UNDER LASER HEATING 

V. A. Dlugunovich and V. N. Snopko UDC 536.3:535.312 

The reflection coefficients at the wavelengths 0.63, 1.15, and 10.6 ~m of compo- 
site materials, heated in air by continuous CO 2 laser radiation, were determined 
experimentally. 

Composite materials based on organic and glass fillers and polymer resin binders are 
being increasingly employed in modern technology. The most promising instruments for working 
these materials are the technological CO=, YAG, and argon lasers, whose radiation can heat, 
melt, and evaporate the most heat-resistant materials. 

The main parameter determining the efficiency of heat transfer from radiation to a non- 
transparent material with laser heating is the reflection coefficient. As a result interest 
in determining the reflective properties of composite materials in the spectral regions of 
lasing of technological lasers has increased [1-3]. Previously performed measurements of the 
reflection coefficients R% at wavelengths of 0.63, 1.15, and 10.6 Dm of commercial textolites 
(Getinaks, textolite, glass-textolite), heated by continuous CO 2 laser radiation, showed that 
at the starting stage of irradiation irreversible thermochemical transformations (pyrolysis 
and charring), which decrease the reflection of short wavelength radiation (1.15 and 0.63 
~m) and increase the reflectivity at the center (10.6 ~m) of the IR region of the spectrum 
[4, 5], occur in the surface layer of the indicated materials. The temperature dependences 
of the reflection coefficients of cokes, forming on the surface of polymer composites under 
quite prolonged heating and fixed density of the incident laser flux, were obtained. However 
for thermophysical calculations of the heating and thermal destruction of the composite 
materials it is necessary to have information about the changes in the reflection coefficients 
and the temperature of the heated zone at the initial period of irradiation as a function of 
the incident flux density of the laser radiation. To this end, in this work we studied the 
behavior of the reflection coefficients of organic fiber plastics of the Getinaks and texto- 
lite PTK types as well as STK glass textolite as a function of the density q of the continuous 
CO= laser radiation flux incident on them. The textolites studied are polymer composite 
materials. Grade I Getinaks (GOST 2718-66) is a layered material, pressed from electrical 
insulation paper, permeated with phenol formaldehyde resin of the resol type. The construc- 
tion textolite PTK (GOST 5-72) is prepared from cotton fabric, which, like the Getinaks, is 
permeated with resol resins based on phenol. The fill for the STK glass textolite (GOST 126- 
52), which exhibits an elevated heat resistance, consists of E glass cloth, and the binder is 
KO-926 silicone resin. These materials are employed for pipes, valves for chemical equipment, 
pinions, slide bearings, and other load-bearing components [6]. 

The measurements were performed on a setup which permits recording simultaneously the 
He-Ne and CO 2 laser radiation fluxes reflected from the samples and the temperature of the 
surface of the target in the heating zone, using the procedure described in [4]. The true 
temperature of the surfaces of the samples was determined from measurements of the intensity 
of the characteristics thermal radiation of the target and of the reflected radiation of the 
He-Ne laser employed as the illumination source at wavelengths of 0.63 or 1.15 ~m. The 
errors in the temperature measurements were evaluated using the formula (2) [4] and did not 
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